[22] Rahbar, K., Chai, C. C., & Zhang, R. (2018). Energy
cooperation optimization in microgrids with
renewable energy integration. IEEE transactions on
smart grid, 9(2), 1482–1493.
https://doi.org/10.1109/tsg.2016.2600863
[23] Rodríguez, F., Fleetwood, A., Galarza, A., & Fontán,
L. (2018). Predicting solar energy generation through
artificial neural networks using weather forecasts for
microgrid control. Renewable Energy, 126, 855–864.
https://doi.org/10.1016/j.renene.2018.03.070
[24] Spyrou, E., Hobbs, B. F., Bazilian, M. D., &
Chattopadhyay, D. (2019). Planning power systems in
fragile and conflict-affected states. Nature Energy,
4(4), 300–310. https://doi.org/10.1038/s41560-019-
0346-x
[25] Wang, Q., Fan, J., Kwan, M.-P., Zhou, K., Shen, G.,
Li, N., Wu, B., & Lin, J. (2023). Examining energy
inequality under the rapid residential energy transition
in China through household surveys. Nature Energy,
8(3), 251–263. https://doi.org/10.1038/s41560-023-
01193-z
[26] Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan,
J. C., Qin, R., & Wang, C. (2018). Energy
management of multiple microgrids based on a system
of systems architecture. IEEE transactions on power
systems : a publication of the Power Engineering
Society, 33(6), 6410–6421.
https://doi.org/10.1109/tpwrs.2018.2840055
[27] AbdulRafiu, A., Sovacool, B. K., & Daniels, C.
(2022). The dynamics of global public research
funding on climate change, energy, transport, and
industrial decarbonisation. Renewable and Sustainable
Energy Reviews, 162.
https://doi.org/10.1016/j.rser.2022.112420
[28] Ampelli, C., Giusi, D., Miceli, M., Merdzhanova, T.,
Smirnov, V., Chime, U., Astakhov, O., Martín, A. J.,
Veenstra, F. L. P., Pineda, F. A. G., Galán-Mascarós,
J. R., & Perathoner, S. (2023). An artificial leaf device
built with earth-abundant materials for combined
H<inf>2</inf> production and storage as formate with
efficiency > 10%. Energy and Environmental
Science, 16(4), 1644–1661.
https://doi.org/10.1039/d2ee03215e
[29] Arbulu, M., Grijalba, O., & Oregi, X. (2021). Analysis
of Energy Retrofit Assessment Methodologies in
Buildings by European Research Projects.
Environmental and Climate Technologies, 25(1), 265–
280. https://doi.org/10.2478/rtuect-2021-0019
[30] Bertolini, M. (2022). Energy Efficiency in Urban
Context: An Overview of European-Funded Projects
with the Analysis of an ELENA Case Study.
Sustainability (Switzerland), 14(17).
https://doi.org/10.3390/su141710574
[31] Bianco, V., & Sonvilla, P. M. (2021). Supporting
energy efficiency measures in the residential sector.
The case of on-bill schemes. Energy Reports, 7, 4298–
4307. https://doi.org/10.1016/j.egyr.2021.07.011
[32] Bianco, V., Sonvilla, P. M., Gonzalez Reed, P., &
Villoslada Prado, A. (2022). Business models for
supporting energy renovation in residential buildings.
The case of the on-bill programs. Energy Reports, 8,
2496–2507.
https://doi.org/10.1016/j.egyr.2022.01.188
[33] Braeuer, F., Kleinebrahm, M., Naber, E., Scheller, F.,
& McKenna, R. (2022). Optimal system design for
energy communities in multi-family buildings: the
case of the German Tenant Electricity Law. Applied
Energy, 305.
https://doi.org/10.1016/j.apenergy.2021.117884
[34] Breyer, C., Khalili, S., Bogdanov, D., Ram, M.,
Oyewo, A. S., Aghahosseini, A., Gulagi, A., Solomon,
A. A., Keiner, D., Lopez, G., Hoekstra, A., &
Sovacool, B. K. (2022). On the History and Future of
100% Renewable Energy Systems Research. IEEE
Access, 10, 78176–78218.
https://doi.org/10.1109/ACCESS.2022.3193402
[35] Brożyna, J., Strielkowski, W., & Zpěvák, A. (2023).
Evaluating the Chances of Implementing the “Fit for
55” Green Transition Package in the V4 Countries.
Energies, 16(6). https://doi.org/10.3390/en16062764
[36] Crupi, F. (2022). Urban Regeneration and Green and
Blue Infrastructure: The Case of the “Acilia–
Madonnetta” Urban and Metropolitan Centrality in the
Municipality of Rome. Urban Science, 6(3).
https://doi.org/10.3390/urbansci6030056
[37] Davydenko, L., Davydenko, N., Bosak, A., Bosak, A.,
Deja, A., & Dzhuguryan, T. (2022). Smart Sustainable
Freight Transport for a City Multi-Floor
Manufacturing Cluster: A Framework of the Energy
Efficiency Monitoring of Electric Vehicle Fleet
Charging. Energies, 15(10).
https://doi.org/10.3390/en15103780
[38] De Rosa, M., Bianco, V., Barth, H., Pereira da Silva,
P., Vargas Salgado, C., & Pallonetto, F. (2023).
Technologies and Strategies to Support Energy
Transition in Urban Building and Transportation
Sectors. Energies, 16(11).
https://doi.org/10.3390/en16114317
[39] Dolores, L., Macchiaroli, M., & De Mare, G. (2022).
Financial Impacts of the Energy Transition in
Housing. Sustainability (Switzerland), 14(9).
https://doi.org/10.3390/su14094876
[40] Dyussembekova, N., Temirgaliyeva, N., Umyshev,
D., Shavdinova, M., Schuett, R., & Bektalieva, D.
(2022). Assessment of Energy Efficiency Measures’
Impact on Energy Performance in the Educational
Building of Kazakh-German University in Almaty.
Sustainability (Switzerland), 14(16).
https://doi.org/10.3390/su14169813
[41] Englberger, S., Abo Gamra, K., Tepe, B., Schreiber,
M., Jossen, A., & Hesse, H. (2021). Electric vehicle