Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo - UNAT

Symbolic Regression, Bifurcations, and Logistic Models Applied to Commodity Volatility: A Case Study in the Peruvian Electrode Industry
Revista de Investigación Científica y Tecnológica Llamkasun
PDF (Español (España))
HTML (Español (España))

Keywords

Chaotic dynamics
Symbolic regression
Commodities
Dow Jones index
LME index
Supply chain

How to Cite

Cáceres Linares, L. C. (2025). Symbolic Regression, Bifurcations, and Logistic Models Applied to Commodity Volatility: A Case Study in the Peruvian Electrode Industry. Revista De Investigación Científica Y Tecnológica Llamkasun, 6(1), 31–42. https://doi.org/10.47797/llamkasun.v6i1.140

Abstract

This research proposes a methodological framework based on chaotic dynamics and nonlinear equations to analyze the relationship between international stock market indices (Dow Jones and LME) and the price behavior of imported commodities essential for electrode manufacturing in Peru. The volatility of these inputs directly impacts the profitability and sustainability of the national welding industry, especially under highly uncertain global conditions. ARIMA models (Box-Jenkins), symbolic regression (SR), and Verhulst logistic equations were applied to model time series of commodity prices from 2018 to 2023. Additionally, bifurcation analysis and the Feigenbaum constant were used to detect chaotic transitions. Results show that nonlinear models outperform traditional linear approaches, with lower Root Mean Square Error (RMSE) in predictive performance. Empirical validation confirmed that erratic market behavior can be anticipated through dynamic attractors. It is concluded that integrating advanced mathematical tools enhances supply chain management by providing a predictive system that reduces uncertainty in the procurement of raw materials. This approach supports better strategic decision-making in the electrode manufacturing industry and may be applicable to other industrial sectors highly sensitive to commodity price fluctuations.

https://doi.org/10.47797/llamkasun.v6i1.140
PDF (Español (España))
HTML (Español (España))

References

Abraham, R., Gardini, L., & Mira, C. (2004). Chaos in discrete dynamical systems: A visual introduction in 2 dimensions. Springer. https://doi.org/10.1007/978-3-642-18882-8

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. Holden-Day.

Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company.

Chopra, S., & Meindl, P. (2019). Supply chain management: Strategy, planning, and operation (7th ed.). Pearson.

Christopher, M. (2016). Logistics & supply chain management (5th ed.). Pearson Education.

Day, R. H. (1992). Complex economic dynamics: Obvious in history, generic in theory, elusive in data. Journal of Applied Econometrics, 7(S1), S9–S23. https://doi.org/10.1002/jae.3950070503

Debreu, G. (1991). The theory of value: An axiomatic analysis of economic equilibrium. Yale University Press.

Drucker, P. (1974). Management: Tasks, responsibilities, practices. Harper & Row.

Feigenbaum, M. J. (1978). Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics, 19(1), 25–52. https://doi.org/10.1007/BF01020332

Feigenbaum, M. J. (1983). Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 7(1-3), 16–39. https://doi.org/10.1016/0167-2789(83)90112-4

Guegan, D. (2009). Chaos in economics and finance. Annual Review of Financial Economics, 1(1), 143–170. https://doi.org/10.1146/annurev.financial.050808.114341

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press.

Lipson, H. (2009). Principles of modularity, regularity, and hierarchy for scalable systems. Journal of Biological Physics and Chemistry, 9(1), 151–158. https://doi.org/10.4024/40709.jbpc.09.03

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Marr, B. (2024). The future of business analytics. Kogan Page.

Matilla, A. S. (2003). Dynamics of customer satisfaction: Modeling and managerial implications. Journal of Service Research, 5(2), 131–144. https://doi.org/10.1177/1094670502238916

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459–467. https://doi.org/10.1038/261459a0

Murray, J. D. (2002). Mathematical biology I: An introduction (3rd ed.). Springer. https://doi.org/10.1007/b98868

O’Neill, M., & Ryan, C. (2010). Grammatical evolution: Evolutionary automatic programming in an arbitrary language. Springer. https://doi.org/10.1007/978-1-4419-8983-3

Peters, E. E. (1996). Chaos and order in the capital markets: A new view of cycles, prices, and market volatility (2nd ed.). Wiley.

Rosser, J. B. (2000). From catastrophe to chaos: A general theory of economic discontinuities. Mathematics and Computers in Simulation, 51(1–2), 259–273. https://doi.org/10.1016/S0378-4754(99)00132-5

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81–85. https://doi.org/10.1126/science.1165893

Stiglitz, J. E. (2002). Globalization and its discontents. W. W. Norton & Company.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3–28. https://doi.org/10.1257/jep.28.2.3

World Trade Organization. (2024). World trade statistical review 2024. WTO.

Abraham, R., & Shaw, C. (1992). Dynamics: The geometry of behavior. Addison-Wesley.

Guckenheimer, J., & Holmes, P. (1985). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer. https://doi.org/10.1007/978-1-4612-1140-2

Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511755798

Packard, N. H. (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell, & M. F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293–301). World Scientific. https://doi.org/10.1142/9789814415743_0017

Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand & L.-S. Young (Eds.), Dynamical systems and turbulence (pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Luis César Cáceres Linares

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...